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Computational Techniques Based on the Lanczos 
Representation 

By J. N. Lyness* 

Abstract. In his book Discourse on Fourier Series, Lanczos deals in some detail with 
representations of f(x) of the type f(x) = h,-i(x) + gp(x) where h,-I(x) is a polynomial of 
degree p - 1 and gp(x) has the property that its full range Fourier coefficients converge at the 
rate r-P. 

In Part I, some properties of h,(x) and of the series Ih,(x) l0 are described. These prop- 
erties are used here to provide criteria for the convergence or divergence of the Euler-Mac- 
laurin series, in the case when f(x) is an analytic function. The similarities and differences 
between this series and the Lidstone and other two-point series are briefly mentioned. 

In Part II, the Lanczos representation is employed to derive an approximate representation 
F(x) for an analytic function f(x) on the interval [0, 1] is derived. This has the form 

P-i m12 

F(x) = E Xqi1Bq(x)/q! +2 E (Iu cos 2irrx + V, sin 2irrx) 
toq1 rhO 

and requires for its determination the values of the derivatives f (a-l )(1) - f (q-l )(O) (q = 1, 
2, * * p - 1) and the regularly spaced function values f(j/m) (j = 0, 1, * * *, m). It involves 
replacing gp(x) by a discrete Fourier expansion based on trapezoidal rule approximations to 
its Fourier coefficients. 

This representation is a powerful one. The drawback is that it requires derivatives. Most 
of Part II is devoted to the effect of using only approximate derivatives. It is shown that when 
these are successively less accurate with increasing order (the sort of behaviour encountered 
using finite difference formula), then the representation is still powerful and reliable. In a 
computational context the only penalty for using inaccurate derivatives is that a larger value 
of m may-or may not-be required to attain a specific accuracy. 

PART I.** PROPERTIES OF THE SEQUENCE hp(x) 

1. The Lanczos Representation. In this section, we outline a derivation of 
what we term Lanczos' representation for a function f(x). We suppose that f(x) 
is an analytic function of x and is real valued when x is real. For convenience, we 
suppose that f(x) is analytic in a region of the complex plane which contains the unit 
interval [0, 1], a restriction which we denote by 

(1.1) f(x) E AR[O, 1]. 

Most of the results require only that 
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(1.2) f(x) & C'P, 1] 

for some self-evident value of p. 
A well-known representation over the unit interval is the Fourier series 

co 

(1.3) f(x) = If + 2 E C(r)t cos 27rrx + S(r)f sin 27rrx. 
r=1 

The coefficients which occur in this series (Fourier coefficients) are given by 

(1.4) If = C _ J f(x) dx 

and by the real and imaginary parts of 

(1.5) C(rf + ICf f e27rirx d. 

In cases in which f(x) is a function of several variables, we indicate the integration 
variable explicitly by writing for example 

(1.6) c r)(f(X)) = C(r) f 

It is well known that within the open interval (0, 1) the Fourier series coincides 
with f(x). Specifically, 

f(X) = f(X), 0 < x <1, 

(1.7) f(1) = f(o) = 2(f(1) + f(o)), 

(x + 1) = f(x) all x. 

The Fourier series (1.3) is a particularly useful tool when f(x) is a periodic function 
of period 1. In this case, the series converges reasonably rapidly. For example, if 
there are no singularities within a distance d of the real axis, the asymptotic behaviour 
of the Fourier coefficients is bounded by an inequality of the form 

(1.8) |C(rf + s(r)fl < K -2rrd 

However, if f(x) is not periodic, the use of the Fourier series (1.3) has two related 
drawbacks of a computational nature. First is the circumstance that the series may 
converge very slowly. For example, when f(l) # f(O), we have 

(1.9) S(r)f O(Fl) asr r 

and, unless f'(1) = f'(0) 

(1.1 0) C (r) t O(f -2) asr oo 

If a truncated form of the Fourier series is used for numerical approximation, a large 
number of terms have to be retained to obtain a required accuracy. The second 
related drawback is the fact that methods for evaluating the integrals in (1.5) numeri- 
cally are cumbersome. For the larger values of r, the integrands are more rapidly 
oscillatory and so more difficult to evaluate numerically. 

A modified representation, based on the Fourier series, has been discussed by 
Lanczos [4]. This involves expressing f(x) in the form 
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(1.11) f(x) = hp-1(x) + gJ(x) 

where hp 1(x) is a polynomial of degree p - 1 and gp(x) has Fourier coefficients 
which satisfy the order relation 

(1.12) 
C(r) 

g, + i S (")g, - 0(r-') as r c->o . 

A convenient method for obtaining this representation is by means of the Fourier 
Coefficient Asymptotic Expansion (FCAE). This may be derived using integration 
by parts and has the form 

(1.13) C(r)f + iS(r)f E ( I - (1) (?)) + Cp()f + is(r)f, 

where the remainder term has the integral representation 

(1.14) C(r)f + is(r)f = (2wi)op J f(P)(te2rrt 1) dt. 

Clearly, 

(1.15) C(r)f + iS(r)f - O(r-P) as r -c o. 

The expressions (1.13) for Cr )f and Sr )f may be substituted into the Fourier series 
(1.3). The summations over index r may be expressed in terms of Bernoulli functions, 
defined by 

Rq~~x) OD 
e2rirx-irq/2 (1.16) Aq(X) = - 2 E Ree 

q ~~r=1 (27rr)' 

This follows the standard notation used for example in Abramowitz and Stegun 
[1, pp. 803 et seq.]. The result is 

f(x) = if + E (f(q -)(1) - f(q 1)(0)) BQ(X) + 2 E CP(f cos 27rrx 
(1 . 17) q=1 

co 

+ 2 E S(r)f sin 27rrx. 
r = 1 

The function BQ(x) coincides with the Bernoulli polynomial Bq(x) in the open interval 
(0, 1) for all values of q and in the closed interval [0, 1] for all values of q other than 
q = 1. Since 

(1.18) 1B (x) = x- 2; BJ(0) = A1(1) = 0, 

it follows from (1.7) that 

(1.19) f(x) - f(x) = (f(1)- f(0))(Bj(x) - A1(x)), 0 _ x < 1, 

and, adding this into (1.17), we find 

f~x) = If + X (f(Q~1)(1) - f(Q~l)(0)) BQ(X) + 2 E C(r)f cos 2irrx 

(1.20) q=1 q. r=l 

+ 2 
c 

S(r)fsin 27rrx, 0 ?x 1. 
r=1 

The sum over index q is clearly a polynomial of degree p - 1 in x. In many applica- 
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tions, it is convenient to define h,_1(x) in a manner which includes If. In this particular 
application, we include If in the definition of g,(x). Thus, we define 

P-1 

(1.21) ~~hp_1(x) = (q (1))- f (qO)))B,(x)1ql 
q=1 

and 

(1.22) gp(x) = f(x) - hp l(x) = If + 2 E cpr)f cos 27rrx + 2 E s r)f sin 27rrx. 
r=I r=1 

This gives the Fourier coefficients of gp(x) directly. Thus 

(1.23) JgP = If, 
C(r) + isr)g = C(r)f + iS(r)f 

and, in view of order relation (1.15), these Fourier coefficients are of order O(r- ) 
as r becomes infinite. We state these results as a theorem. 

THEOREM 1.24. If f(x) & C [O. 1] then 

f(x) = hp l(x) + gp(x), 

where hp-,(x) is the polynomial of degree p - 1 given by (1.21) above and gp(x) is a 
function whose Fourier coefficients satisfy the order relation 

C r)g -O(r-P), Srgp 
-- 

O(rFP) as r -> ooz. 

We conclude this section by stating some of the more obvious properties of 
hp-1(x) and gp(x). If we denote by BQ(S)(x) the sth derivative of the function B,(x) 
(and not a Bernoulli function of the sth kind), it is simple to show that 

(1.25) B (8)1)( - B s)(O) = q! when s = q- 1, 
= 0 otherwise. 

From this, it may be shown that 

Igp = If Ihp1 0, 
g(r) (1) g(r) (0) = 0, r = 0, 1, * * , p - 2, 

(1.26) = f(r)( ) - f(r)(0) r = p - 1, p, * 

h (r() J - h(r)l(0) = f(r)(1) - f(r)(O), r = 0, 1, I * *, p - 2, 

-0, r =p- 1,p,* 

Given that h1pl(x) is a polynomial of degree p - 1, these relations provide enough 
information to completely specify hp-,(x). The relations which involve g,(x) may 
also be used in conjunction with the FCAE (1.13) applied to g(x) to show the order 
relation (1.24) directly. It also follows from (1.14) and (1.22) that the function gp(x) 
has the integral representations 

g(x) if + f - (x- t dt 
(1.27) 

i C ICP-1) B.- (x t) 
Jo (-i) 
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Certain special classes of functions give rise to particular cases. If f(x) is a polynomial 
of degree d ? p - 1, then 

(1.28) gp(x) = If 

is a constant. If f(x) is a periodic function of period 1 and so 

(1.29) f(x + 1) = f(x) all x, 

then 

(1.30) hp-l(x)= 0, f(X) = gp(x). 

In this case, the theory given above is of course formally correct, but not of particular 
interest. 

2. Convergence of the Sequence hp(x). In Part II, we discuss a method for 
the implementation of this representation. In this section, we consider the convergence 
properties of the sequence of polynomials 

(2.1) If + hp(x), p = 1,2, 3, 

We have noted that, when f(x) is a polynomial of degree d, all members of the sequence 
after the dth are identically equal to f(x). Thus it is of interest to ask to what extent 
it is the case that the infinite sequence converges, and if it does converge, whether 
or not it converges to f(x). 

The question of whether or not the infinite series 

(2.2) E (f(q-1)(1) _ f(q-1)(0))Bq(x)/q!, 0 < x _ 1, 
a=1 

converges depends on the rate of growth of the Bernoulli polynomials and of the 
derivatives of f(x). So far as the Bernoulli polynomials are concerned, we rely on the 
following well-known limits 

(2.3) urn B2q(X) (2w)2q 2 cos 2w, 0 < x < 1 
q-(. oo (2q)! 

(2.4) urn -2(x (2w)4 - _1 1 3 

q--+c (2q)! -Y 2' X 
I 

(2.5) lim ur+n ) (2T)2 q + I= 2 Isin 2wrxl, 0 ? x < 1 
q-co(2q + 1)! 

(2.6) A2q+1(x) = 0, x = 0, 2 1 

These are either given in Abramowitz and Stegun [1, pp. 803 et seq.], or are simple 
deductions from formulas given there. The coefficients involving the derivatives 
depend on f(x) only through the derivatives of 

(2.7) 0(x) = f(x + 1 ) - f(x) 

evaluated at x = 0. Since f(x) is analytic in a region containing the unit interval [0, 1] 
it follows that p(x) is analytic in a region which contains the origin. The rate of 
increase of the derivatives p(')(O) as n becomes infinite is closely connected with the 
behaviour of p(z) as z becomes large. If p(z) is not an entire function, and its Taylor 
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series about z = 0 has a finite radius of convergence p, then 

(2.8) lim sup f0 (0)1n ! lb./n /P 

Using the limiting form of Stirling's formula 

(2.9) lim (e/n)(n!)/n - 1, 

it follows that 

(2.10) lim sup (en) = l/P. 

On the other hand, if Sp(z) is an entire function, the rate of increase of the derivatives 
O(n)(0) is less rapid than this and may be expressed in terms of the order 4 and the 
type r of the entire function p(z). The theory of entire functions is described in some 
detail in Boas [2]. The order-type classification of entire functions depends on the 
functional 

(2.11) Mf(r; a) = max ko(z)I. 
I z I = r 

The entire function p(z) is of order 4 if 

(2.12) lim sup log log M(r; p) = 
r -- oolog r 

and ifO < 4 < a, itis of type r if 

(2.13) lim sup r-' log M(r; ap) = r. 

Thus the function 

(2.14) f(Z) = p(z)erz 

where p(z) is any polynomial and 4 is an integer of order 4 and type r. The three 
functions 

p(z), p(z)p(ez)e 2s e3 rz 
z + e 3 

are of orders 4 = 0, o = and 4 = 2 respectively. In the first two cases, the type 
is not defined. In the third case, r = 3. Finally, a class of functions which frequently 
occurs is defined as follows: An entire function is of exponential type r if it is of 
order 4 < 1 or if it is of order 4 = I and type <?r. 

The rate of growth of derivatives ( n)(0) is related to the order and the type of 
p(z) in a natural manner. In comparing this growth for two different functions, the 
one with highest order has the highest ultimate rate of growth. If the two functions 
have the same order, the one of highest type has the highest rate of growth. These 
remarks apply to zero and infinite orders and types when they are defined. If 4 and r 

are both finite, the results which correspond to (2.8) and (2.10) are 

(2.15) lim sup n P 
= eur 

n and 

and 
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(2.16) lim sup (e/n)ys a>(O)V'/ = 
n-+m 

We now return to the series (2.2) in which we are interested. It is convenient to 
decompose (p(x) into its even and odd parts, defined by 

(2.17) (o?(x) =2 (9(X) X (P(-X)). 

Then 
(2q) (2q) (0), (2q+l) (0) = o 

(2.18) + 
(0) = +() (2a?1)(o) = 

=20, (2q?l 2ql 

and the infinite series (2.2) may be written 

co() Bn 1 W o() Bn?1(x 
(2.19) >i: S?- (?) ?(x )! + E ?+ O) 

n (n + 1! n=O (n+ 1! 

displaying the symmetric (about x = ,) and the antisymmetric parts separately. 
(Alternate terms in each of these two summations are zero in view of (2.18).) We 
apply the Cauchy convergence criterion separately to each sum. We set 

(2.20) u,~ = ~c(O) Bn 1(x = (n Bn+ 1(x 
(2.20) Un 

=-9 (0)(?- (n + 1)! ' V = 
990) (n + 1) 

and evaluate lim sup IUnI 1/n and lim sup IVnJ I/n. It is necessary to make several evalua- 
tions of this nature to cover the cases in which both <+(x) and <_(x) are not entire or 
are entire of order 4 and type r. The series Un involves Bernoulli functions of even 
order and a different result is obtained when x = 4 or 3 because (2.3) leads to in- 
determinate results and (2.4) has to be used instead. We give details below of one 
limit evaluation, the case of un with x # I or 4. 

If 5p(z) has a finite radius of convergence p we rewrite (2.20) in the form 

(2.21) 
lull/n 

= [_ _ I [{ B I(2 
s)ni+ 

/] 
_ __ I__ _ 

(2.21) 
L~ ~~n 1L(n + 1 )! )+1 e (21r)1?'f 

In view of (2.10), the superior limit of the first term in square brackets is i/p. In view 
of (2.3), the limit of the second term in square brackets is 1. The remaining terms 
become infinite with increasing n. Thus 

(2.22) uM sup Un 
I ' =I 

and the Cauchy convergence criterion indicates that the series ua diverges. 
If 5pjx) is an entire function of order 4 and type r (both being finite), we express 

junj1/n in the form 

(2.23) ln += [{jj) ko()(0) V/} ] * (2ir) } 

(27r1l + 1/n e 

Again, the limit superior of the first term and the limit of the second term are finite 
and their product is 4T. Thus 
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lim sup |n = o, y < 1, 

(2.24) = T/21r, U- 

= A, , > 1 

The series E Un converges if this limit is less than 1 and diverges if this limit is greater 
than 1. We note that E un is only the symmetric part of the series (2.2) and that this 
particular result is invalid when x = I, I, since then the second term in square brackets 
in (2.23) does not have the limit 1. However, we may state that, if 50_x) is of exponen- 
tial type T < 27r and x $ 4, 4, then the symmetric part converges while, if 5(x) is 
not of exponential type T < 27r and x $ 4, 3, then the symmetric part diverges. 

The results of carrying out a similar investigation in each of the several cases 
involved lead to the following theorem. 

THEOREM 2.25. If f(x) is analytic in a region containing the interval [0, 1], the 
convergence or divergence of the series 

if + E (f(Q-l)(1) - f("_')(0))B2(x)1q! 
q=l 

depends on the nature of the even and oddparts cp+(x) and cpjx) defined by (2.17) of the 
function sp(x) = f(x + 1) - f(x) in the following manner. Following Table 2.26, for 
x C X, the series converges if F(x) is an entire function of exponential type r < T and 
diverges if F(x) is not an entire function of exponential type r ? T. 

TABLE 2.26 
X F(x) T 

4x 0 integer 4p(x) 2r 
4x = even integer cpx) 27r 

4x = odd integer &P4x) 27r 
~cP+(X) 47r 

In the final case, both conditions must be satisfiedfor convergence but either condition 
gives rise to divergence. 

The proof, given in part above, does not cover the cases in which ,u or r is infinite. 
However, it is clear that the condition for convergence depends on the rate of growth 
of SOIn)(o) with increasing n, which in turn depends on the value of 4 (or if ,u is kept 
fixed the value of r) in a monotonic manner. Thus, the only functions for which the 
theorem above does not give a specific answer to the question of whether or not the 
series converges are those for which F(x) is precisely of order 1 and type T. The fore- 
going discussion determines the conditions under which the series obtained by letting 
p become infinite in 

P-1 

If + E (a-1) (1) - J(-1)(0))Bjx)1q! 
Q=1 

converges or diverges. However, it does not provide the information that, when there 
is convergence, the limit is f(x). In fact, this need not be the case. If f(x) is a periodic 
function, i.e., one for which 

(2.27) f(X + 1) = Ax), 
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then 5p(x) is identically zero and so each term in the series is zero. The relation for 
finite p is of course satisfied, that is 

(2.28) f(x) = hp,-(x) + gj(x), 
but 

(2.29) rim (If + hv (x)) = If 

which is not identical with f(x) unless f(x) is constant. We now prove a theorem which 
gives a sufficient (but not necessary) condition for convergence to the appropriate 
result. 

THEOREM 2.30. If f(x) is an entire function of exponential type T < 27r, then 

lim (If + hj(x)) = f(x), 0 < x < 1. 

Proof. Since 

(2.31) f(x) = (If + hp-l(x)) + (gp(x) - If), 

it is sufficient to show that the final term approaches zero as p becomes infinite. 
Using integral representation (1.27), we find 

p1f P A(tRX 
- t) 

( Ig, 1 W- If = | f(t) dt 
(2.32) 

< max lA,(x)/p!I M., 

where M, is the maximum of If ' P(t)I in the range 0 ? t ? 1. In view of Eqs. (2.3)-(2.6), 
there exists a number K, independent of p, for which 

(2.33) LBR(x)/p! I < K/(27r)". 

If f(x) is an entire function of order 4 and type r, then g(x) = f(x + c) is also such 
a function. In view of this, Eq. (2.16) is satisfied with so ("(0) replaced by any f I 

n(X) 
with 0 < x < 1 and hence also with 5 0n )(0) replaced by 

(2.34) Mn = max If(n)(x)I. 

Thus, in view of (2.16), 

(2.35) lm sup (e/n)Y'1 M'/n = A 
n--c 

Consequently, for all e > 0, there exists a number K(e) which satisfies the inequality 

(2.36) Mn < K(e)[(,4r + E)(n/e)'1 ]n/1, e > 0. 

Substituting this into (2.32) gives 

(2.37) lg,+1(x) - If I < K K(E)((r + e)/27r)", i- 1, 

(2.38) lg,+1(x) - If I < K(K'(E, T, A))P(pP)1-11, 0 < < 1 

In the second case, the limit, as p becomes infinite, is zero, independently of the value 
of T. In the first case, with 4 = 1 and T < 21r, we may choose E = (r + 27r)/2 and 
so the limit, as p becomes infinite, is also zero. In view of (2.31), this establishes 
Theorem 2.30. 
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3. The Convergence of the Euler-Maclaurin Series. The Lanczos representa- 
tion is in fact a special case of the Euler-Maclaurin summation formula (3.5) below. 
Equation (1.20) may be thought of as expressing the difference between the one-point 
quadrature rule f(x) and the integral If in the form of a series h,-1(x) and a remainder 
term g,(x) - If. The Euler-Maclaurin summation formula may be derived from the 
Lanczos representation as follows: We denote the trapezoidal rule operator by 

Im-1 
(3.1) RA (x()) = -E f((j + t )/m), to, = (I + aX)/2. 

This is abbreviated to R'm ''f in cases in which no confusion is likely to arise. It is 
trivial to verify that 

(3.2) R m, al(e2r ikx) = e2ri(k/m) t a k/m = integer or zero, 

= 0, otherwise. 

The trapezoidal rule, applied to a Bernoulli function, generates another Bernoulli 
function. Applying (3.2) to (1.16) gives 

(3.3) R'm al(B,(x - t)) = Hq(ta - mt)/m. 

Applying this operator to the Lanczos representation 

(3.4) R alm'c = Rlm alhol + Rtm aJ(gp(x) - If) + Rm al(If), 

we find using (3.3) that 

(3.5) R'aj (()(1) - f~s-')(0)) Qq ! + Ep" 1f 

where the remainder term, denoted here by Epom "a, is 

(3.6) Elm.alf = Rlmal(go,(x) - If). 

The standard integral representations for this remainder term may be obtained 
directly from the integral representations (1.27) for gp(x). Using (3.6) again, we find 

Elm 1 M1 f=I (t) Bv(t.) - AP(t, - mt) 

(3.7) 
= - 1 - (P- 1) (t) BP-I (ta - mt) dt 

This particular derivation of this well-known result suggests that there should be a 
close connection between the convergence properties of the infinite series known as 
the Euler-Maclaurin series obtained by allowing p to become infinite in (3.5) and the 
infinite series discussed at length in Section 2. In fact, these series differ only in so 
far as there is an additional m-' factor in the qth term and that x is replaced by to. 

Thus, Theorem 2.25 applies here, with these two alterations; i.e., to, replaces x and 
the conditions r > T and r < T are replaced by r > Tm and r _ Tm, respectively. 

THEOREM 3.8. Under the conditions of Theorem 2.25 and following the notation of 
Theorem 2.25, the Euler-Maclaurin series 
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0o 

E (f(q-1) (l) _ fvq-1) (0))Bq(tat) Mq q !. 
q=1 

converges for ta E X if F(x) is an entire function of exponential type -r < mT and 
diverges for ta E X if F(x) is not an entire function of exponential type -r < mT. X, F(x) 
and T are given in Table 2.26. 

There is a direct analogue of Theorem 2.30, which may be proved in just the same 
way. This is 

THEOREM 3.9. If f(x) is an entire function of exponential type T < 27rm, then 
the Euler-Maclaurin series converges to the expected result, that is 

co 

R'c f = If + a (f(q-l)(l) _ f(q (0))B,(ta)/M !. 
q=1 

This is only a sufficient condition. Theorems 3.8 and 3.9 are illustrated by the 
following example: Let 

(3.10) f(x) = e2rox + cos 2irnx, = 32, n = 6. 

Then f(x) is an entire function of exponential type r = max (Inl, 1/1) = 6 while 

(3 .11 ) sn(x) = (e2r _ 
-)e2rx 

is an entire function of exponential type -r = I1 = 32. 
Thus, according to Theorem 3.8, the Euler-Maclaurin series diverges for m = 1, 

2, 3 and converges for m > 1i1 = 3j. According to Theorem 3.9, the Euler-Maclaurin 
series converges to the proper result for m > n = 6. For the intervening values of m, 
i.e., m = 4, 5, 6, the series converges, but so far as Theorem 3.9 is concerned it may 
converge to a different result. Inspection of this particular function shows that in 
fact it converges correctly for m = 4, 5 but incorrectly for m = 6. This example 
establishes that the converse of Theorem 3.9 is not generally valid. 

To complete the picture, we note a well-known result, namely that there are cases 
in which the Euler-Maclaurin expansion is semiconvergent. This happens for the 
standard cases of the trapezoidal endpoint rule (a = 1, ta = 1) and the trapezoidal 
midpoint rule (a = 0; ta = 1) when the derivatives of f(x) satisfy one of the following 
inequalities: 

(3.12a) f'2,'(x) ? 0 all p _ po, 0 < X < 1, 

(3.12b) f(2,'(x) < 0 all p _ po, 0 < X < 1. 

This follows quite simply using the inequalities 

(3.13) (-1)"(B21(1) - 
A2p(1 

- Mt)) > 0, 0 < t < 1, 

(-0)P(21(0) B kjl- Mt)) < 0, 0 < t < 1 

Thus when a 1 or 0, the remainder term E2Pm ,a ] f given by (3.7) alternates in sign 
with p when p > po so long as the even order derivatives of f(x) satisfy one of (3.12a) 
or (3.12b). 

The corresponding result about the series (If + hp(x)) is rather uninteresting. This 
is that, if one of conditions (3.1 2a) or (3.1 2b) is satisfied, the sequence is semiconvergent 
at the values x = 1 and x = 1. 
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To sum up, the convergence properties of the Euler-Maclaurin series are most 
unsatisfactory. For the rather narrow class of entire functions of exponential type 
-r < 27rm, the series is known to converge to the correct result. For functions whose 
derivatives satisfy relations (3.12), the standard series (with a = 1 and a = 0) are 
semiconvergent. In the absence of this sort of information about f(x), the series may 
diverge or may converge and if it converges this may be to a correct or to an incorrect 
result. 

4. The Euler-Maclaurin Quadrature Rule. The rather unsatisfactory con- 
vergence properties of the Euler-Maclaurin series are not well known. For example, 
in elementary numerical analysis textbooks, a quadrature method called the Euler- 
Maclaurin rule is occasionally presented in the form 

1Xrn 

h f f(x) dx = f(xo) + f(xl) + + f(x.-,) + 2f(x.) 

(4.1) - 
h2 

(X.) - 
f'(xo)) 

+ 7 (X.) - f..(X0)) 

+ h (f 51(x.) - f 5)(0)) 
30240 

where 

(4.2) Xi = xO + jh 

together with a statement that the remainder term is 

flB2m,,h 
2 

21( 
(4.3) (<2m)< f(2r)(t) x0 K t K xn. 

and possibly a statement about the semiconvergent nature of the expansion. While 
perfectly correct, such a presentation may be very misleading, as it appears to be an 
invitation to the user to take a fixed value of n and to carry on calculating the terms 
in the expansion until they appear to be negligible. If the function in question happened 
to be periodic with period xn - xO, each term in the expansion is zero. The user is 
left with the usually incorrect result 

(4.4) J xA= fR(x) d- [n 1 xf 

In this case, the appearance of a number of zero terms might act as a warning. But 
for the function 

(4.5) f(x) = fP(x) + g(x) 

in the case where the Euler-Maclaurin expansion converged for g(x), he would find 
the expansion for f(x) converged to 

(4.6) R["f fp + Ig, 

leaving an error If - R [n 1fp. While this error may be small, it may be very much 
larger than the user imagined. His only fault in such a case is that he did not check 
the magnitude of the remainder term. However, in elementary computational pro- 
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cedure this step is habitually omitted as reference to most elementary textbooks will 
confirm. 

In cases where the derivatives at the endpoints of the integration interval are 
known, the Euler-Maclaurin rule is a powerful tool, but it should be used in a manner 
in which theoretical convergence to the result is assured. For example, one could 
take a fixed value of p and evaluate approximations 

Im,2p = Rim lay - B2 f'(0)) - (f"'(t) - 

(4.7) 

B2p (g2p-' (1) - f(2p-1) (0)) 

for a sequence of values of m. In this case, 

(4.8) Im,2p = If - E2p+2 

and the discretisation error goes to zero, satisfying the order relation 

(4.9) E~p+2 c) as m -a o. 

Even if the derivatives in (4.7) are incorrect, the discretisation error approaches zero 
but at a different rate. While the user can be misled into thinking that the sequence 
has converged to within his required accuracy, at least he is constructing a sequence 
which does converge to the correct result. 

Another quadrature rule which is open to the same sort of misuse is the Gregory 
rule. This may be derived from the Euler-Maclaurin series by reexpressing the deriva- 
tives in terms of finite differences. This is often presented in the form 

IXn 

f f(x) dx = h(Qf(xo) + f(xl) + . + f(x.-,) + lf(x.)) 
xso 

1 1 

(4.10) 12 -y- 24 (Vy 
2 

+ A2yO) 

- 7 (V3Y - A3y0) - 1 (V 4Y + A4y0) 

Again, using a fixed value of n and proceeding to evaluate the finite differences may 
be quite unreliable. But the theory is rather complicated since the errors incurred by 
approximating the derivatives by finite differences sometimes tend to compensate 
for an error of the form R[- fp - Ifp. When precisely n terms are retained, the 
formula is identical with the Newton-Cotes (n + I)-point formula of closed type. 
A satisfactory procedure for using Gregory's formula is to fix the number of terms 
to be retained and to form a sequence of approximations in a manner analogous to 
that described above for the Euler-Maclaurin rule. 

5 . Other Two-Point Series. There are naturally many other methods of 
decomposing a function f(x) into the sum of a polynomial hp-1(x) and a function 
g,(x) having specified properties. The Lanczos representation is simply one which 
has a useful application which is described in Part II. There are in particular two other 
representations which have been described in the literature (Jones and Hardy [3]) 
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which are extremely close to the Lanczos representation. One of these is the Lidstone 
series. We describe these two briefly in this section. 

The Lanczos representation is derived in Section 1 by substituting the Fourier 
coefficient asymptotic expansion (1.13) into the Fourier series (1.3). The two similar 
representations are derived in an analogous manner using the cosine and the sine 
half-range Fourier series respectively. We set 

co 

(5.1) f(x) = ao + 2 E a, cos irrx, 0 _ x _ 1, 
r=1 

where 

(5.2)' ar = f (x) cOs 7rrx dx. 

Using integration by parts, we find 

(5.3) a~ = - (-1)rf(2i 1)(1) _ 
f(2i2 (0) (t)i~ + ar,2p, 

(7rr)2 

where 

a2 = 

P f(2p 1)(1)r + f (2p-)(0) + f(2p)(X) co ]rrx (5.4) rp (7rr) 2P~L '' 

O(r 2P) as r -> O 

Substituting this into (5.1) gives 

(5.5) f(x) = If + h2p-2(x) + g2p(x) 

where 
P- 

2 B2k~((1 ? x)/2) f21) 2k B2k(x/2 2k1 (5.6) h2p-2(x) = E 22k f(2kl)(1) - 2 2 f(2k0l)(0) 
k=1 (2k)!1 (2k)! 

and 

(5.7) g2p(x) = 2 E ar,2p cos 7irx. 

In view of the order relation in (5.4), the half range cosine Fourier coefficients of 
g2,(x) are of order (r-2P) and, clearly, h2p-2(x) is a polynomial of degree 2p - 2. The 
odd order derivatives of h2p 2(x) at the endpoints satisfy the relations 

(5.8) h2j-i1(1) = f(2j_'(1), h(2 1 )(0) = f(2i1')(0), i = 1, 2, ... , p 1. 

In the special case in which f(x) is symmetric about x = 2, the cosine half-range 
series (5.1) coincides with the full range Fourier series (1.3). LI this case, the functions 
h2p-2(x) given by (5.6) coincide with those given by (1.21), both having the form 

P-I 

(5.9) h2p 1(x) = h2p2(x) = 2 E f(2k-1)(I)B2k(x)12k!. 
k=1 

Unless f(x) is symmetric, the two functions h2,-2(x) given by (5.6) and by (1.21) are 
of different structure from one another. 
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The Lidstone series can be derived from 

(5.10) f(x) = 2 E br sin irrx, 0 < x < 1, 
rl 

where 

(5.11) br = f f(x) sin 7rrx dx. 

Using integration by parts, 

(5.12) br = E(_)t(2i)() _ 1f' 1(0) (2li'+ + br, 2p+ 
j=O 7r 

with 

(5.13) br,2+l (7r) 2p+1 _f /(21)(-1)r + f(2p)(0) + f /2p+1 (X) cos izrx dA] 

O(r-(2p+1)) as r --> X 

Substituting this into (5.10) gives 

(5.14) f(x) = h2p-l(X) + g2p+l(X) 

with 

(5.15) h2 1(x) = E 22i+1 B2i+1((x + 1)/2) f(2j)(1) - 22+ 1B2i+l(x/2) (2 

j=O (2] + I)1) (2] + 1)! . 

and 

(5.16) g2p+1(X) = 2 br,2p+l sin7rrx. 
r=1 

In view of the order relation in (5.13), the half range sine Fourier coefficients of 
g2p+1(x) are of order (r-2p+ 1'). Clearly, h2p l(x) is a polynomial of degree 2p- 1. 
It is conventionally expressed in the form 

P-1 

(5.17) h2p-l(x) = E Ai(x)f 2j)(1) + Aj(1 - x)f(2j)(0) 
i =0 

where A,(x) is the Lidstone polynomial of degree 2j + 1 defined by 

(5.18) Ai(x) = 22i+ l B2i+l((x + 1)/2) 

The even order derivatives of h2p l(x) satisfy the relations 

(5.19) h 21) (1) = f(2i) (1), h(21j) = 2j) iy) I = 0, 1, * , p 

If f(x) is antisymmetric about x = l, then the function h2-l(x) given by (5.17) coin- 
cides with the function h2p l(x) given by (1.21), both having the form 

P-1 

(5.20) h2p-l(x) = h2p(x) = 2 E f(2 i'(1)B2+ 1(x)/(2j + 1)!. 
i =o 

Otherwise these series are different from one another. Yet another series of the same 



96 J. N. LYNESS 

general nature is the series in Euler polynomials 
P 

hp(x) = E l(f(i)(l) + f i)(O))Ej(x)/j! 
i =0 

with the related property 

h(1)(I + h(')(O) = f(')(I) + f(i)(O), i = 0O 1, , p. 

These series differ fundamentally from each other and differ fundamentally from 
the two-point truncated Taylor expansion which interpolates f(x) and its derivatives 
at x = 0 and x = 1. 

There is a wide literature about the Lidstone series. See for example Lidstone [5], 
Widder [6]. However, only in the case in which f(x) happens to be antisymmetric are 
these results relevant to the Lanczos representation. 

PART II. AN APPROXIMATE REPRESENTATION FOR f(x) 

1. An Approximate Representation F(x) for f(x). In Part I, the Lanczos 
representation of a function f(x) was introduced and some of its theoretical properties 
were described. Briefly, when f(x) E AR[O, 1], this has the form 

(1.1) f(x) = hp-1(x) + gj(x). 

Here h,1(x) is a polynomial of degree p - 1 given by 
P-1 

(1.2) h 1 (x) = E (f(q-1)(1) -f(q-1)())Bjx)1q! 
q=1 

while g,(x) has Fourier coefficients which satisfy the asymptotic order relations 

(r) 
cr)gp- f gp(x) cos 27rrx dxA O(rp) as r a), 

(1.3) 

s (r) 1 f gp(x) sin 27rrx dxA O(rp) as r co 

The work presented here is based on the results given in Sections 1, 2 and 3 of Part I. 
Since the Fourier coefficients of gp(x) diminish in magnitude rapidly, we consider a 
numerical representation F(x) for f(x) ,based on the exact expansion 

P-1 

f(x) = E (f(q-l)(j) - 1) (0))Bjx)1q! + Igp 
(1.4) q=1 

ao a~~~~~~~~~~~~o 
+ 2 C(r) gp cos 27rrx + 2 E S (r) gp sin 27rrx. 

r=1 r=1 

Expressions for the Bernoulli polynomials Bq(x) are readily available (Abramowitz 
and Stegun [1, p. 803]). Thus, given a value of p we require numerical values of 

(1.5) (P q-1) (0) q = 1, 2, .. , p - 1, 

where 

(1.6) ep(x) = f(x + 1)- f(x) 
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and numerical values of 

(1.7) Igp; C(r)gp, S(r)g , r = 1, 2, I S, 

where 

(1.8) gp(x) = f(x)- hp-,(x), 

the value of s depending on the numerical accuracy required. The advantage of such 
a representation over the Fourier series of f(x) is that, because of order relations (1.3), 
the value of s is likely to be reasonably small, and so fewer Fourier coefficients may 
be needed to attain a given accuracy. The disadvantage is that the derivatives (1.5) 
are required. 

Before proceeding, we discard the possibility that, by choosing p sufficiently large, 
we may attain sufficient accuracy in the approximation without having to evaluate any 
of the Fourier coefficients of gp(x) other than Ig&. This would be the case if 

(1.9) lim(If + hp(x)) = f(x). 
De-co 

However, we have shown in Section 2 of Part I, that while (1.9) may be established 
for functions f(x) which are entire functions of exponential type r < 27r, in general, 
the limit in the left-hand side of (1.9) does not exist and 

(1.10) lir Ihm(x)l = co. 

Furthermore, even if the limit exists, it may not be equal to f(x). Consequently, a 
general method based on (1.4) has to employ a moderate value of p and has to include 
provision for calculating at least some of the Fourier coefficients of gp(x). One effect 
of using a larger value of p is to increase the magnitude of the early Fourier coefficients 
of gp(x). It is only useful to do this if enough of the later Fourier coefficients are 
to be calculated that advantage can be taken of the more rapid ultimate convergence 
rate. 

Since the Fourier coefficients of gp(x) converge reasonably rapidly, the use of the 
trapezoidal rule for their evaluation is reasonably efficient. In principle, we might 
employ any offset trapezoidal rule of the form 

m 1 
(1.11) R[m:]f = 

R['ma(f(y)) = 1 f(( + t)/m), ta = (1 + a)/2, 

and make use of trapezoidal rule sum approximations to the Fourier coefficients (1.3), 
denoted by 

(1.12) aVm a] = R~mI (g (y) cos 27rry), r = 0, 1, * , m - 1, 

b[m'] = RJma(g (y) sin 27rry), r = 1, 2, * , m - 1. 

It turns out that, from a practical standpoint, the use of the endpoint trapezoidal rule 

(1.13) Rem 1]! = ? {t f(0) + Zfu/m) + f(l)} 

is likely to be most convenient. This coincides with (1.11) with a = 1 or a = -1 
since f(x) = f(x) when 0 < x < 1 and 
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(1.14) f(N) - J(O) = 2{f(1) + f(O)} 

The general theory with other choices of a is marginally more complicated. In Sections 
2-4, we treat the following approximation to f(x). 

Approximation 1.15. 
P-1 

~BQ(X) m/2 
F(x) = (p-1)(Q (0) + 2 i," a,'7,, cos 2irrx 

(1.* 1Q5) r=O 
q r 

m/2 

+ 2 ," bl,'l sin 2wrrx. 
r=O 

The double prime on the summation symbol has the meaning that the ultimate terms 
(as stated), i.e., those with r = 0 and r = m/2, are assigned a weight factor of A2 
When m is odd, the summation concludes with the term r = (m - 1)/2 with the normal 
weight factor of unity. Incidentally, it follows from the definition of br7' 1] that 

(1.16) b=ml] = bmm, 11 - 0 

so the ultimate terms in the second sum over r do not in fact occur. The reason for 
truncating this series at r = m/2, and the reason for the ultimate weight factor 2 is 
given in Section 2. 

The approximate representation (1.15) requires for its construction the parameters 
p and-m, the derivatives o(a-1)(0), q = 1, 2, * * *, p - 1, and the function values 
f(j/m), j = 0, 1, . , m. In Section 2, we deal with the discretisation error F(x) - f(x). 
In Section 3, we consider the effect of using approximate derivatives in place of 
sP(a-0)(0) in (1.15). In Section 4, we describe possible implementations. One of these 
is designed to determine appropriate parameters p and m to provide an overall 
discretisation error less than a given tolerance Ereq. 

2. The Discretisation Error F(x) - f(x). In this section, we discuss the 
discretisation error F(x) - f(x) of the approximation F(x) defined by (1.15) to f(x). 
We note that, since the function h,,-(x) is common to both f(x) and F(x), it follows 
that 

(2.1) F(x) - f(x) = G(x) - g(x) 

where G,(x) is a well-known approximation (Gentleman and Sande [8]) to g,(x), 
namely 

m/2 

(2.2) Gp(x) = 2 a" (as .,1" cos 2irrx + b mp, sin 2irrx). 
r=O 

In this section, we shall drop the subscript p when no confusion is likely to arise. Since 

co 

g(x) = Ig + 2 E C(r)g cos 2irrx 
(2.3) 

r= 

+ 2 E S(r)g sin 27rrx, 
r=1 

it follows that 
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m/2 

G (x) - g(x) = 2 All (a[m l] - C(r)g) cos 2rrx 
r=O 

m/2-1 0o 

(2.4) + 2 E (b m l] - S(r)g) sin 27rrx - 2 A" C(r)g cos 27rrx 
r=1 r=m/2 

co 

-2 E S(r)gsin 2rrx. 
r=m/2 

The purpose of this section is to express this discretisation error in terms of the 
Fourier coefficients of the function gp(x). This may be done most conveniently by 
means of the Poisson summation formula (2.5) below. We verify first that 

R. [ ma (e2Tirx) = e2 rs Wm) ta r/m = integer, 

= 0, otherwise. 

Then, applying the trapezoidal rule operator to the Fourier series of f(x) gives 

0o 

(2.5) Rm IM11f - If = 2 E: 
( Ms)f 

s=1 

We replace f(x) here by g(x) cos 27rrx. Since 

(2.6) 2Cx (g(x) cos 27rrx) = C(ms+r)g + C(ms-r)g 

we find 

(2.7) aIm 1] - C(r)g = Z C(ms+r)g + C(ms-r)g. 
s=1 

Similarly, 

0o 

(2.8) b[m-] _ srg = (ms+r)g _ S(ms-r)g. 
8 = 1 

The case with r = m/2 is somewhat exceptional. These summations then reduce to 

(2.9) am - 2C(m/2)g = 2 E c(msm/2)g 
3=1 

(2.10) bm,]= 0. 

The reason for cutting off the series (1.15) at the term r = m/2 becomes apparent on 
inspection of (2.7) or (2.8). With r > m/2, a term C(')g occurs on the right of (2.7) 
with t < r. Since the Fourier coefficients generally decrease in magnitude, this implies 
that the approximation error is likely to be greater than the quantity being approxi- 
mated when r > m/2. Substituting (2.7) and (2.8) into (2.4) gives the principal result 
of this section, namely 

(2.11) G(x) - g(x) = E C(t)gt(x) + E S(t)g3t(x), 
t=0 t=o 

with the values of a t(x) being given by 
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(2.12) at(x) = 0, t < m/2, 

ams+r(x) = 2(cos 27rrx- cos 27r(ms + r)x), s _ 1, Irl < m/2, 

It(x) = 0, t < m/2, 

(2.13) 3ms+r(x) = 2(sin 27rrx -sin 2ir(ms + r)x), s _ 1, Irl < m/2, 

1ms+r(X) = -2 sin 27r(ms + r)x, s > 1, Irl = m/2. 

The main result of this section follows from the circumstance that by inspection 

(2.14) at (x) = t W(x) = 0, t < m/2, 

(2.15) lat(x)l < 4, I/3(x)' < 4 all t. 

Thus 

(2.16) IGp(x) - gp(x)| ? 4 E |c(t)gil + Is(t)g'l. 
t =m/2 

In view of order relations (1.3) and identity (2.1), we find 
THEOREM 2.17. For a fixed value of p, the approximation 1.15 has a discretisation 

error which satisfies the order relation 

IF(x) - f(x)I O(m- 1) as m-* o. 

Certain other results of a well-known character follow from (2.11). 
THEOREM 2.18. If f(x) is a trigonometrical polynomial of degree m/2 - 1, then 

F(x)_ f(x). 

Proof. In this case, hp -(x) = 0 and f(x) = gp(x). Thus, 

C(t)f = C(t)g= S(t)f = S(t)g = 0, t > m/2, 

and the result follows directly from (2.16) and (2.1). 
THEOREM 2.19. If f(x) is an algebraic polynomial of degree p - 1, then 

F(x) f(x). 

Proof. In this case, gp(x) = If, a constant. Thus, all the Fourier coefficients 
occurring in (2.16) are zero. 

THEOREM 2.20. The discretisation error is zero at the abscissas x, = j/m, 

F(j/m) = f(j/m), j = 0, 1, ... , m. 

This is an algebraic result, independent of any properties of f(x). Setting x = j/m 
in (1.15) and simplifying the resulting double summation leads to this result. However, 
it follows quite simply from (2.11) because rx -(ms + r)x = -sj is an integer 
and so, from (2.12) and (2.13), 

at(xi) = 3t(xi) = 0. 

3. The Effect of Inaccurate Derivatives 5(1)(0). The approximation described 
in the previous sections is a powerful one by commonly accepted standards in com- 
putational theory. It has one significant drawback. This is that the values of the 
derivatives of 50(x) given by 
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(3.1) p(x) = f(x + 1 ) - f(x) 

at x = 0 are required. In the case that f(x) is an analytic function, and function evalua- 
tions in the complex plane are allowed, then this does not present a significant difficulty 
(see Lyness and Sande [9]). However, it can happen that methods for evaluating f(x) 
when x is complex are not readily available. In this case, one may have to resort to 
finite-difference approximations, which are notoriously unreliable. 

Previously, the prevailing view has been that, as a practical tool, this approximation 
has little value simply because these derivatives are required. In fact, some ingenuity 
has been applied to varying the approximation in such a way that a result of a par- 
ticular order may be obtained requiring one less derivative evaluation. (Lanczos [4], 
Jones and Hardy [3]). Certainly, if an equally convenient and accurate method were 
to be constructed which did not require these derivatives, that method would be 
preferable. In the present absence of such a method, it seems worthwhile to look 
more closely into the effect of using approximate derivatives, which we denote by 
'O (0) in place of exact derivatives 5p``(0). We denote by Aq., the error in the 
(q - 1)th derivative. Thus 

(3.2) = <(q- () -( 

Clearly, the procedure by which F(x) is constructed may be applied using these 
inaccurate derivatives. One constructs in place of hp,-(x) given by (1.2) a different 
function hp l(x) given by 

P_1 

(3.3) hpl(x) = E (q 1)(O)B,(x)1q!. 
q=1 

In place of gp(x), the function 

(3.4) gP(x) = f(x) - hpl(x) 

is used. In place of arm,[ml] and brp[m lo, the trapezoidal rule sums 

(3.5 [m,1] - [m,1] (gp(y) cos 27rry), 

b[m1] = R [ m,1 ((y) s in 27rry) 

are calculated, and these are inserted into (1.15) to give, in place of F(x), the function 

P-1 
~Bq(X) m/2 

dM1 

=w 
) P " -')(o) + 2 a" 

arIp cos 27rrx 
(3.6) q=1 q! r=O 

m/2 

+ 2 a'" br" sin 27rrx. 
r =O 

Many of the results obtained in Sections 1 and 2 apply equally with tildes attached 
to each quantity. In fact, all results based only on algebraic manipulation are valid. 
The results which do not apply are those involving order relations. Thus we find, 
in place of (2.16), that 

IGp(x) - kp(x)I ? 4 E IC't'IgP + Is(t')kI 
t =m/2 

but, since the Fourier coefficients S t)gp are not of order O(t-P) but are of order 
O(t-F), the result corresponding to Theorem 2.17 is simply 
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IF(x)- (x)I I-O(m) as m -o 

and not 0(m-" 1). Consequently, once inaccurate derivatives are used, the main 
feature of the procedure, its rapid ultimate convergence rate, disappears. 

On the other hand, one would expect that if the errors in the derivatives were 
very small, the difference F(x) - F(x) would also be small and that the method would 
be almost as powerful as if the derivatives were exact. In other words, while the order 
reduces from 0(m-' 1) to 0(m0), the numerical value of the difference might be small. 

Consequently, we investigate the effect of inaccurate derivatives in this section. 
First, we find an expression for F(x) - F(x) (Theorem 3.16 below). Then we determine 
a bound for 1F(x) - F(x)l (Theorem 3.21 below). These involve the quantities A-. 
Finally, we make some realistic assumptions about the magnitude of A, and, on 
the basis of these, discuss the overall effect on the calculation. It turns out that this 
is not catastrophic. In some cases, there is no noticeable effect at all. In others, there 
is an increase in the required value of m, but in a calculational context, it is effectively 
the same as replacing 0(m- " ) by 0(m-'P2). 

We now proceed to obtain expressions for F(x) -,F(x) in terms of A,-,. Taking 
the difference between (1.2) and (3.3), we find 

P-1 

(3.7) gp(x) - gp(x) = - 1(x) + hp (x) = - AiB,(x)/q!. 
q=1 

Taking the difference between (1.12) and (3.5) and using (3.7), 

a[ml1] - a[ml] = R[m] '((kp(y) - gp(y)) cos 27rry) 
(3.8) P-1 

= - Z Ai-R [m l ((Bq(y)/q!) cos 2irry). 
q-1 

It is convenient to denote trapezoidal rule approximations to the Fourier coefficients 
of the Bernoulli polynomials by Xr,q[m a] and Yr q[m a. These are defined as the real 
and imaginary parts of 

(3.9) r, 
= Xrm aI + iy[ma] = Rm a((B,(y)/q!)e27rY) 

Using (1.15), (3.6), (3.7), (3.8) and the corresponding relation to (3.8) for brp[m' 1] 

straightforward algebraic manipulation yields 
P-1 

(3.10) A(x) - F(x) = ,-1Em1(x) 
q=1 

where 

Bin) /2 m/2-1 l 
1 

(3.11) Eaml](x) = B(x) - 2 " Xrma ' cos 27rrx - 2 E y[l sin 27rrx. 
q r=0 = 

An alternate form for E,[m '"(x) may be obtained by rederiving (3.10) directly 
from (2.1 1). In view of (2.1), we have 

(3.12) F(x) - f(x) = Z (C"gpt(x) + S(t)gp3,(x)) 
t =0 

where the functions a t(x) and ,B (x) are given by (2.12) and (2.13). An equation similar 
to (3.12) is valid with F(x) replaced by F(x) and gp replaced by gp. Taking the difference 
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between this equation and (3.12) and using (3.6) again, we recover (3.10) above, 
with E,' '(x) expressed in a different form, namely 

(3.13) E0ml(x) (= - ct) (Bq(y)) + r()Sll (B q(y)) 

The Fourier coefficients of the Bernoulli polynomials are very straightforward. 
Thus, with q > 0, 

CM (I~- (-1) ~y) (3 .1 ( 
/ (2rt) 

S =0 q! , q even, 
(3.14) 

S(t) Bq(y)) =(1)o212 ' ~ t ' (yq) a dd S I 21/ = , q odd. 

Since a t(x) = 0 when t _ m/2, we find 

E[m '](x) = E/ (-1Y'2at(x)/(27rt)", q even, 
(3.15) t =m/2+1 

E[m 1](x) = E (- 1)/'2-1"20t(x)/(27rt)q, q odd. 
t =m/2 

The results obtained so far in this section may be summarised as follows: 
THEOREM 3.16. The approximation F(x) obtained using derivatives So(q-1 )() = 

?(q 1)(0) + 'A-1 differs from F(x) given by (1.15) by an amount 
p-1 

F(x) - F(x) = E AlEqmi(x) 
q=l 

where the coefficients are given explicitly by (3.1 1) or (3.15). 
We now turn to deriving a bound on the magnitude of the difference F(x) - F(x). 

To this end, we require bounds on the magnitude of E,'m' 1(x). Since lat(x)l < 4 
and I t(x)I < 4, we find a simple bound in the cases in which q > 2 in terms of the 
generalised zeta function 

(3.17) t(q, a)= 1/(a + r), q > 1, a > 0, 
r =O 

and its well-known bound 

(3.18) t(q, a) < 1/(q - 1)(a - i)", q > 1, a > 2 

Using this in (3.15) yields 

4 001 4 
IE~ml1(x)I < (2r ~ =(7) (,m/2) 

(3.19) (27r) t=m/2 t (27r) 

< 2/r q >/1r 
WTM - 1))'-'(q - 1)' q 1 

The case with q = 1 has to be treated separately. In Appendix 2, it is shown that 

(3.20) 1E1m(x)1 < 23 

THEOREM 3.21. The quantity expressed in Theorem 3.16 is bounded by 
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(3.21) IF(x) - F(x)[ < -2 JAoI + EaQ _I 7r Q= (ir(M -1)'q-1 

A marginally worse bound, which is convenient for the subsequent discussion, is 
p-1 

(3.22) I l(x) - F(x)l < 32 Ia-l I/(r(m- 
q=1 

In the rest of this section, we shall consider in some detail the behaviour of various 
terms as m becomes large. In this context, we shall assume that the value of p is fixed. 

The analysis carried out above is valid for arbitrary values of A-. Taking the 
limit in (3.21), we see 

(3.23) lim lE(x) - F(x)l < 2 AO. 

Since 

(3.24) IF(x) -f(x)l - O(m") as m -. c 

it follows that 

(3.25) lim IF(X) - f(x) < 13 Ao. 

We recall that, while we have referred to the quantities A,, as errors in derivatives, 
the quantity 

(3.26) AO = o(?) - o(?) 

is in fact an error in function values. Thus, in a situation in which all function values 
are exactly calculated and the whole calculation is carried out exactly (apart from the 
use of approximate derivatives s(a ) q = 2, 3, p - 1), it follows that A0 = 0 
and (3.25) indicates that 

(3.27) lim F(x) = f(x). 

Of course, if approximate derivatives ip "- ", q = 2, 3, ... , p - 1, were assigned quite 
arbitrarily, the convergence might be very slow indeed, the dominant term in the 
error P(x) - f(x) being AE2fm l(x) - O(m-1) as m - a. 

In order to proceed, we have to make some hypotheses about the magnitude of 
the quantities A. In fact these will be that there exists numbers e f and k such that 
A. and the required accuracy Ereq satisfy (3.34) below. We now justify this hypothesis 
in a computational context. 

The results F(x) and F(x) depend on the function evaluations f(j/m). However 
carefully the calculation is carried out, the accuracy of the final result is limited by 
the accuracy of the initial function values used. Let us suppose that these function 
values have an 'overall' absolute accuracy ef. This may be defined as follows. If Jf, 
is the approximation to f(j/m) used in the calculation, then 

(3.28) e,= max ff-f(i/m)fI 
05j i :5m 

If now a reasonable attempt to calculate s(0) were made, the error in sc{O) is given by 

(3.29) AO = so() - (0) = f(l) -(o -f(O) 

and so 
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(3.30) 1 ?o I _ 2Ej . 

However they are calculated, the error in the higher order derivatives is likely to 
be larger. If these are calculated using finite-difference approximations, the error 
rises rapidly with the order of the derivative involved. It is convenient to assign a 
geometric bound and assert 

(3.31) lAl.11 ? 2efkq-1, q = 1, 2, , - 1. 

Since only a finite number of bounds are involved, and all quantities are finite, a 
number k (which depends on p) exists, defined by 
(3.32) k - max |*i(el)(Q) - ((-l)(Q) 1/(q-1) 

1sqfip-1 2ef 

The value of k is not usually known. If one assumes that one loses five binary digits 
of precision per differentiation, then k = 32. When finite differences are used, the 
rate of increase of A.l depends on the nature of the function and the actual magnitude 
of the derivatives. Thus k may be greater than or less than 32 and depends on the 
value of p. 

The existence of a limit ef on the accuracy of the function values has another 
consequence. If one envisages a calculation involving a moderate value of p, say 
p = 10, then, in view of the various additions and subtractions involved in the calcula- 
tion, one would be very rash to ask for an overall accuracy less than 2pE,. In fact, 
one would be much more cautious than this. Thus it is consistent to suppose that the 
required accuracy satisfies 

(3.33) Ereq _ 2pEfj. 

The discussion above provides a justification for the use of the following con- 
straints on A. and on Ereq. These are: 

There exist numbers Ef and k having the property 

(3.34) IAqa [ I 2?Efk-k , q = 1, 2 ... * p - 1 
'Ereq > 2pef. 

We now return to the discussion of the approximation error. We assume again 
that an exact calculation takes place, but that the required error and the error in the 
derivatives satisfy (3.34). Substituting (3.34) into (3.22) gives 

(3.35) VF(x) - F(x)l < (- r E (mk_) 

This may be further weakened, and written in the form: 
THEOREM 3.36. Under the hypothesis of Theorems 3.16 and 3.21, 

lF(x) - F(x)l ? (4Ef(p - 1)/3)(k/7r(m - 1))v2, m < k/7r + 1, 

< (4-f(p - 1)/3), m ? k/7r + 1. 

The significance of this result lies in the fact that the coefficient 4Ef(p- 1)/3 is 
small; in fact, in view of (3.34), it is less than 2Ereq/3 and so is smaller than the required 
accuracy. 
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For a fixed value of p then, the total discretisation error is bounded by 

(3.37) IF(x) - f(x)I I F(x) - f(x)I + II'(x) - F(x)I. 

As m is increased, the first term on the right reduces, having ultimate order O(m-' 1). 
The second term also reduces, satisfying the bound given in Theorem 3.36. At first, 
while m is significantly less than k/1r, it reduces in a manner consistent with an ultimate 
order O(m`+2). However, when m reaches the value k/1r + 1 or exceeds it, this 
second term falls below the value of the required accuracy and its effect on the total 
discretisation error is unimportant. These remarks may be placed on a mathematical 
footing as follows. Since limmo. F(x) = f(x), we may assert that there exists an integer 
valued function mE(e) having the property 

(3.38) jF(x) - f(x)I < e for all m _ mE(e). 

If we employ (3.37), (3.34) and Theorem 3.36, we find immediately 
THEOREM 3.39. For e _ Ereq, 

IJP(x) - f(x)I < e for all m > mA(E), 

where mA(E) _ max (mE(E/3), 1 + k/1r). 
Consequently, if we were able to compare numerically the progress of a calculation 

using exact derivatives and one using approximate derivatives, we would find the 
following situation. If the exact derivative calculation gives a result whose tolerance 
is less than 'er i/3 for values of m greater than mE(Ereq/3), then the approximate 
derivative calculation gives a result whose tolerance is less than Ereq for values of m 
greater than 

(3.40) mA = max(mE(ereq/3), 1 + k/ir). 

This statement is rigorously exact when all calculations are exact, the only condi- 
tions being that 4, and Ereq satisfy (3.34). 

The consequence of this section is the important result in this paper. Namely, 
one may apply the method and obtain a representation, even if the derivatives are 
not exact, so long as they are computationally reasonable. The sole consequence of 
using approximate derivatives is that possibly more function evaluations may be 
needed to attain a particular accuracy. The ultimate accuracy of the result is not 
impaired. 

There is one further point about the use of approximate derivatives which is 
important in the implementation of the calculation. This is that they should not 
affect any practical convergence criterion by possibly replacing a smooth approach 
to a limit by a spasmodic or erratic approach. This point is considered briefly in 
Appendix 3 where it is shown that in the implementation to be described in Section 4 
this is not a hazard. 

The foregoing discussion has been directed towards the behaviour of the overall 
error in the approximation F(x). As such it represents a discussion of the breakdown 
of Theorem 2.17 when inaccurate derivatives are used and of how this theorem can 
be replaced. 

It is interesting to note that Theorem 2.20 is valid quite independently of the 
accuracy of the derivatives used. Thus 

THEOREM 3.41. 
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F(jrm) = F(]/m) = f(]/rm), j = 0, 1, ... , m. 

The proof of this follows precisely the same lines as the proof of Theorem 2.20. 
That proof depends on the vanishing of multiplying factors a (j/m) and ft(j/m) in 
(2.11) and is independent of the accuracy of Fourier coefficients C)t'g and S)t'g. 

In general, one would expect Theorems 2.18 and 2.19, which refer to the trigo- 
nometric and algebraic degree of F(x), to be completely invalidated if the derivatives 
used are not exact. However, a state of affairs of minor theoretical interest comes 
about when these derivatives are approximated by means of finite-difference approx- 
imations of the form 

(3.42) f(q (xo) = Ld ((xo)f = Ei aAf(xo + 
xi) 

which are exact when f(x) is a polynomial of degree d or less. When approximations 
of this nature are used, the degrees of F(x) may be retained. Theorems analogous 
to 2.18 and 2.19 include the following: 

THEOREM 3.43. If f(x) is a trigonometrical polynomial of degree m/2 - 1 and if 
each pair of derivatives f '"(1) and f ''(0) are approximated by the same finite- 
difference approximations 

(xo) = Ld (xo)f XO = 1, 0, 

then 

(3.44) F(x) = F(x)= f(x). 

THEOREM 3.45. If f('-1)(1) and f'l(0) are approximated by finite-difference 
approximations of algebraic degree d, and d2, respectively, then 

F(x) = F(x)= f(x) 

whenever f(x) is an algebraic polynomial of degree min (d1, dog p - 1). 
For example, if forward differences at x = 0 and backward differences at x = 1 

are employed, the algebraic degree of the approximation may be retained, but the 
trigonometrical degree is reduced to zero. On the other hand, if central (or forward) 
differences of the same order are used at both endpoints, the trigonometrical degree 
of the approximation is retained (and is m/2 - 1) and also the algebraic degree 
may be retained. 

4. Organisation of the Calculation. In this section, the organisation of a 
calculation based on the preceding formulas is described. 

The purpose of the calculation is to determine values of a set of parameters 

(4.1) ; Xq-1, q = 1, 2, * , p - 1, 

M; Ur, Vr r= 0, 1, *-. ,m/2, 

for use in an approximate representation 

p-1 m/2 

(4.2) F(x) = E X.-iB,(x)/q! + 2 Z" IIAr COs 2rrx + Vr sin 2irrx 
q=1 r=O 

which hopefully has the property 
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(4.3) AP(x) - f(X)I < Ereq, 0 < X < 1 

where Ereq is the required tolerance. For the purposes of this description, we suppose 
that the user may evaluate f(x) for all values of x within the unit interval [0, 1]. How- 
ever, all that is required is a table of function values on an equally spaced sufficiently 
fine mesh together with the ability to obtain approximations to the derivatives 

f'a)(1) and f ')(O). 
It is convenient to describe such a program in terms of six stages. First, these 

stages are briefly listed. Then some of the computational aspects of each stage are 
discussed in more detail. 

Stage 1. Assign a value of p. 
Stage 2. Determine a set of approximations 

(4.4) f(a-(1) M), (j-1)(0), q = 2, 3, * * * p - 1, 

to the corresponding derivatives ' (1'(), fq -' (O). Then set 

(4.5) X= f(1) -AO), 

Xq-1 = jP-1)(1) - jPQ-')(0) q = 2, 3, *** p- 1, 

and define the function g,(x) as 
P-1 

(4.6) gM(x) = f(x)- E X.-iB2(x)/q!. 
a = 

Stage 3. Assign a value of m. 
Stage 4. Determine tir and vr as a set of trapezoidal rule sums as follows: 

(7 = p[mi] - RmQl(g (x) cos 2wrrx), r = 0, 1, * , m/2, 

v= bml]= Rm l](g2 (x) sin 2rrx), r = 0, 1, , m/2. 

By definition Po = Pm/, = 0. 
Stage 5. Calculate an error estimate. (This is discussed below.) If this estimate 

is less than E, eq, then the calculation is complete. 
Stage 6. If this estimate is not less than E, eq, either reassign p and return to 

Stage 2 above, or reassign m and return to Stage 4 above. 
Almost any serious attempt to calculate a set of parameters is likely to conform 

to some extent to the description given above. The degree of sophistication of the 
program will depend on the context in which it is subsequently used and on the human 
time devoted to its construction by the user. 

In a context in which function evaluation is not expensive, the user may attempt 
to assign values of p and m which hopefully produce a sufficiently accurate result 
without recourse to iteration. As a very rough rule of thumb, the choices p = 7 or 8 
and m = 32 produce an accuracy of order 

(4.8) E / 10-7 max jf(x)j 
O<x __ 

for 'well behaved' functions. If, at Stage 5 (discussed below), one finds that the result 
is not sufficiently accurate, the iteration could consist of simply replacing m by 2m 
and returning to Stage 4. 

We now discuss the various stages separately. 
Stage 2. Whatever value of p is assigned, it is usually convenient to calculate 
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approximations of all derivatives up to a maximum (say p = 12) the first time Stage 2 
is encountered. Then if subsequently a new choice of p is made, all that is entailed 
is a change in the value of p in (4.6). The derivatives may be approximated using 
forward and backward differences at x = 0 and 1, or, more accurately, using central 
differences at both x = 0 and 1; again, a method based on Cauchy's integral repre- 
sentation (see Lyness and Sande [9]) may be used. These all involve only function 
values either within the interval [0, 1] or near the endpoints x = 0 and x = 1 or in 
the complex plane. Alternatively, one may use analytic expressions for the derivatives 
or approximate analytic expressions. The choice simply depends on what is readily 
available or convenient. There is no need for the later derivatives to be particularly 
accurate. One might expect successive derivatives to be successively less accurate, 
the final derivative having perhaps 10% or 20% accuracy. 

Stage 4. There are many formulas which can be used in various circumstances 
to shorten this calculation. (In the following description, only the formulas relevant 
to the even part of the trigonometrical expansion are given explicitly. Precisely anal- 
ogous formulas with sin replacing cos exist.) 

In view of (4.6), it follows that 
22-1 

(4.9) R m j](g2(x) cos 2rrx) = R[ml(f(x) cos 27rrx) - E 2 X'Xr, ] 
q=l 

where 

(4.10) X = Rml]((B(x)/q!) cos 2rrx). 

These coefficients were introduced in Section 3 and simple analytic forms are given 
in Appendix 2. A precomputed table of these coefficients may be useful, particularly 
if the calculation is to be repeated with different integrand functions f(x). 

If Stage 4 is reentered with a different value of p but with the same value of m, again 
formula (4.9) should be used. Since Xr ,qm1 ] = 0 when q is even (and Yr ,qm l] = 0 
when q is odd), it follows that the quantities in (4.7) satisfy 

cam i] _ [mi] 

(4.11) ar,p-l = arp p even. 

bm,1 ] b1m,1] 

Thus, only half the approximations (4.7) need be altered when p is altered to p + 1, 
m remaining fixed. 

If Stage 4 is reentered with a new value of m which is double the previous value, 
then, in addition to the previous function values f(j/2m), j = 0, 2, 4, . . ., 2m, one 
requires m new function values f(j/2m), j = 1, 3, 5, ... , 2m - 1. Convenient formulas 
for this updating procedure may be based on the identity 

(4.12) R[2m,1])w6 = 
1[R[m1)V/ + R[m,0]1P]. 

This may be used in several ways. For example, one may set 

R '2 (gP(X) cos 2rrx) = AR'm'l](t(x) cos 2wrrx) + AR[m o?(f(x) cos 2rrx) 
(4.13) P-1 

- \X qix[2m~l] n o-1 Ar, 

in which case only formulas for Xr ' I2m l] are required. Alternatively, one may use the 
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formulas for X, q [mO, given in (A.2.17), to calculate 

(4.14) R m ](g1(x) cos 2rrx) = Rim 0](f(x) cos 2rrx) - E 1 Xq, X, 0,] 

and then apply (4.12) directly with ,I(x) = gk(x) cos 27rrx. 
In whatever manner Stage 4 is coded, the fast Fourier transform technique (see 

for example Gentleman and Sande [9]) may be used for the evaluation of the sets 
of finite Fourier transforms of the form R.m a(so(x) cos 2rrx) as and when they 
occur. However, in view of the small value of m involved, the saving is not very 
significant. 

Stage 5 (Error Estimate). 
(i) The Observed Error Estimate. The simplest, most reliable but least economic 

method is to evaluate the error 

(4.15) E(x) = f(x) - P(x) 

at a few carefully selected values of x. It follows from Theorem 2.20 that 

(4.16) E(j/m) = 0, 1 = 0, 1, ... m, 

and an evaluation at one or two of these points provides an estimate of the overall 
roundoff error level (and a check against coding errors). The largest values of E(x) 
occur in general near the ends of the interval and in regions where f(x) has high 
derivatives such as peaks or rapid oscillations. Consequently, one may evaluate 
E((2j - 1)/2m) with j taking a few selected values, including j = 1 and I = m, and 
take the value with largest magnitude as an error estimate. This estimate involves 
further function evaluation, but if the error is larger than f-reqe these function values 
are required subsequently when m is replaced by 2m. 

(ii) A Theoretical Error Estimate. An alternative error estimate which does not 
involve further function evaluation may be based on the currently available set of 
approximations ar, pM 1 and br, ,[m l] to C(r gP and S(r)gp. This is an asymptotic 
estimate, based on the error bound 

(4.17) jF(x) - f(x)I < 4 E jC"t'g2, + 4 E jS"t'gj 
t =m/2+1 t=m 

(see (2.16)) and on the asymptotic behaviour of the Fourier coefficients 

(4.18) C(r)g 9P (rPI), S(r)gp 
_ 

0(rP2) 

where 

(4.19) Pi = P. P2 = P + 1s p even, 

Pi = P +, P2 = P, p odd. 

One used the values of ar, Pm l] and brp m l] to estimate bounds K1 and K2 which 
hopefully satisfy 

(4.20) IC(r)gpl < Kirp', IS(r)gpl < K2/r"V. 

For example, one may set 
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K1 = max i -n~~ (1L~~ a>~ jam/j (a 
(4.21) K1 = 

l 
mxam/4 'P14 ) a3mi8.,I ( 8 ) 2 lan2p 2 ) 

K2 = ma jb,,'J( (m)P2 I (3r)m) 

but there are many other more sophisticated ways of doing this. If K1 and K2 do in 
fact satisfy (4.20), it follows from (4.17) that 

(4.22) jF(x) - f(x)j ? 4K1 (pl, 1 + m/2) + 4K2v(p2, m/2). 

Using standard bounds on the generalized zeta function t(s, a), we find 

(4.23) jF(x) - f (x)j I 4K1 + 4K2 1/y21 
(Pi - 1)((m + 1)/2)pl' (P2- 1)((m- 1)/2) 

This is a rigorous bound only if K1 and K2 satisfy (4.20) for r > 1 + m/2 and r > m, 
respectively. 

In the numerical example given below, the theoretical error estimate is 

(2= a 
4K1 

2l [m 1] 

(4.24) E2 = max(( - 1)((m + 1)/2)p'l , 2 lam/2 ,pl 

+ max( 4K24 bm1,p + (P2- 1)((m- 1 m ) 

This bound is justifiable theoretically if the derivatives are calculated from an 
analytic formula and if the value of m is large enough (in an asymptotic region) 
for (4.20) to form a valid approximation when r _ m/4. The numerical example 
given below illustrates the sort of values of m and p for which this estimate is valid. 

In cases in which the derivatives are calculated numerically, this theoretical 
estimate cannot be justified. Nevertheless, it has been found to work quite well in 
several examples. A proper procedure would be based on inferring the value of the 
sum of the Fourier coefficients in (4.17) from the approximations already available 
without relying on order relations (4.18). It is shown in Appendix 3 that the use of 
approximate derivatives does not introduce erratic behaviour into the sequence of 
approximations, and so a 'practical convergence criterion' based on such a sequence 
can be constructed. 

Numerical Example. Some of these points are illustrated in the following numerical 
example. 

(4.25) f(x) = 1/(x X)2 + A2, X = 0.3; =0.2. 

This function has a peak at x = X = 0.3 where f(X) = 25. Its values at the endpoints 
are f(0) = 7.7 and f(l) = 1.9. It is positive definite and its integral (or mean value) 
over the interval [0, 1] is If = 11.4. 

The numbers given in the table are some of the results obtained using a double 
precision Fortran code on an IBM 195 computer. The machine accuracy parameter 
is 0.2 X 10-15. The derivatives were calculated from analytical formulas. In the 
table are given only the observed error estimate and the theoretical error estimate 
for 1 ? p < 12 and m = 16, 32, 64. 
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TABLE 1 

m= 16 m=32 m=64 
p Observed Theoretical Observed Theoretical Observed Theoretical 

1 .29E + 1 - .29E-+ 1 - .29E + 1 - 

2 .25E 0 .92E 0 .12E 0 .41E 0 .58E- 1 .21E 0 
3 .15E- 1 .22E 0 .36E-2 .54E-2 .83E-3 .15E-2 
4 .16E-2 .52E- 1 .12E-3 .63E-3 .15E-4 .38E-4 

5 .18E-2 .34E- 1 .48E-5 .32E-3 .27E-6 .39E-6 
6 .18E-2 .l1E-1 .71E-6 .13E-3 .21E-7 .42E-7 
7 .18E-2 .1OE- 1 .32E-6 .56E-4 .56E-8 .69E-8 
8 .18E-2 .85E-2 .93E-7 .23E-4 .30E-9 .15E-8 

9 .18E-2 .85E-2 .1OE-6 .1OE-4 .46E-10 .11E-8 
10 .18E-2 .85E-2 .1OE-6 .46E-5 .30E- 11 .31E-9 
11 .18E-2 .85E-2 .1OE-6 .23E-5 .50E- 11 .22E-9 
12 .18E-2 .85E-2 .1OE-6 .1OE-5 .1OE- 10 .65E- 10 

Table of error estimates corresponding to numerical example (4.25). The observed 
error estimate is 

El = max IF((21 - 1)/2m) - f((2j - 1)/2m) 
1<j<m 

The theoretical error estimate is (4.24) above. 

Stage 6. The overall efficiency of the program depends significantly on the care 
with which the error estimate (Stage 5) and the subsequent decision process in Stage 6 
is programmed. There are several points to bear in mind. 

(a) For a fixed m, as p is increased from 1, the error at first decreases, then levels 
off and then (unless f(x) is an entire function of order 1) starts to increase in a rather 
spasmodic manner. The value of p at which this leveling off occurs is different for 
different values of m, generally increasing monotonically with m. 

(b) If m is to be increased at all, at least m further function values will be required. 
Thus, the only economy effected by choosing a new value of m less than 2m is in the 
data manipulation section involving the fast Fourier transform in Stage 4. In special 
cases, such as where there are storage space constraints or in which the value of m 
is unduly large, there may be an advantage in choosing the new value of m to be less 
than double the current value. But, in general, the most convenient procedure is to 
double the current value. 

(c) In subsequent applications of the representation, one may wish to use as short 
a trigonometrical series as possible. With such applications in mind, one may still 
construct a series with an unduly large value of m; once a representation, together 
with an error estimate is available, the tail of the trigonometric series may be truncated 
before use in applications. This procedure is more reliable than trying to gauge an 
appropriate value of m in the course of the calculation. 

For example, suppose in the example illustrated one had sought a representation 
with Ereq = 0.5 X l0-7 and one had ultimately decided on p = 9; m = 64. The 
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theoretical error estimate is .011 X 10' and this is likely to be an overestimate. 
Thus, we have an amount of error 0.39 X 10' in hand and we may omit from the 
final representation any set of terms whose total contribution is known to be less 
than this amount. Examination of the list of g. and v, (not given here) shows that 

32 32 

2 E 4I/r |I 0.19 X O 7 2 E Ivr| 0.02 X 10- 
r=17 r --l7 

Thus, if the trigonometrical series is truncated by omitting terms 2,gr cos 27rrx and 
2vr sin 2irrx for which r > 17, the error incurred as a result of the truncation is less 
than 0.21 X 10-7 An overall error estimate is (0.21 + 0.011) X 10-7 _ 0.221 X 10-7. 

This is a bound so long as a theoretical estimate is indeed a bound. 
Inaccurate Derivatives. To assess the effect of inaccurate derivatives, the author 

has constructed a straightforward numerical differentiation routine. This requires a 
step size H and employs function values at x0, x0 ? (2j + 1)H/2, j = 1, 2, * , 7. 
The routine is based on extrapolation. It constructs a generalised Romberg table, 
discards extreme elements and averages the values of the retained elements. It returns 
a set of approximation f( s (xo), s = 1, 2, , 12, together with a crude error estimate 
for each approximation. 

The calculation was carried out 12 more times with approximate derivatives 
obtained from the numerical differentiation routine with H = 1/16, 1/32, 1/64, 
1/32768, respectively. The first value of H gave wild results and the second gave 
usable results, an accuracy of 105 being attainable with p - 6 and m = 64. The 
next four, i.e., those with H = 1/64, 1/128, 1/256 and 1/512, gave results which 
virtually reproduced Table 1 (to within either 10% or 10-1"). Taking successively 
smaller values of H had the effect of destroying a successively larger portion of the 
lower part of the table, leaving the upper portion virtually identical with Table 1. 
For example, the results with H = 1/4096 correspond almost precisely with those 
in Table 1 up to and including p = 7. Thereafter, the error estimates for each value 
of m increase rapidly giving numbers of order 1o-2 at p = 11 and 10 at p = 12. 

General Remarks. In the example just given, the function f(x) has a slowly 
converging Fourier series. In fact, approximately 106 terms of this series are required 
before the magnitudes of the terms fall below 1W- 7. It is simply in order to avoid 
this sort of calculation that the method given here is constructed. However, for func- 
tions which have a rapidly converging Fourier series, the method given here is un- 
necessary. Thus, if f(x) is periodic with period 1 (and of course analytic), then the 
Fourier coefficients decay exponentially. In this case, 

f(q)()- f(q)(0) = 0 

and so hV(x) = 0. A straightforward finite Fourier transform method is indicated 
in this case. 

It should be noticed that the calculation can be split into parts of even and odd 
parity. We may define 

fE(X) = 2 (f(x) + f(f - x)), to(x) = '2(f(x) - f(1 - x)) 

and the representation of fE(x) includes only terms involving Bq(x) with q even and 
the cosine term part of the Fourier series. Naturally, for a function which is known 
to be even (or odd), only the corresponding half of the calculation described above 
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need be carried out. (Only half the number of function evaluations is then necessary 
since f(x) = ?f(l - x).) However, care is necessary in a case in which the even part 
of f(x) has significantly different characteristics from the odd part. For example, 
if the even part is very much smaller than the odd part, then a table of error estimates 
corresponding to Table 1 would show correspondingly little change when p is increased 
from an odd integer to an even integer, the significant change occurring only when 
p is increased to an odd integer. Any assessment on which an automatic updating 
procedure (in Stage 6) is based should take this possibility into account. The same 
sort of phenomenon occurs when one part is periodic with period 1 but the other 
part is not. 

5. Concluding Remarks. The idea of expanding a given function in a series of 
Bernoulli polynomials is classical and it is well known that such a series is usually 
not convergent. The idea of truncating this series and expressing the remainder term 
as a Fourier series (which is rapidly convergent) is described by Lanczos in [4]. 
While he does give some examples, he limits attention to cases where only very low- 
order derivatives are required. In the notation of this paper, he uses p = 1 or 2. 

The main result of this paper is that one may use large values of p and even if 
the derivatives are inaccurate, the technique can be used safely to obtain results 
of high accuracy. 

One of the advantages of this representation is that it is relatively simple to con- 
struct when the allowed error freq is preset, and the user may have reasonable con- 
fidence that 

t (x) - f(x) I < Ereq , 0 < X ? 1. 

The disadvantage is that it involves both algebraic and trigonometric polynomials. 
This restricts to some extent the possible applications. 

The author is grateful to the referee whose comments were extremely helpful in 
preparing the final form of this paper. 

Appendix 1. The Discretisation Error for the Offset Trapezoidal Rule. In this 
appendix, we outline the theory which corresponds to that of Section 2 in the case 
in which a general offset trapezoidal rule 

1 m-1 

(A1.1) R'maJ(f(x)) = -Ad f((j + t.)/lm), te = (1 + at)/2, 

is used in place of the endpoint rule (with a = 1). Thus 
co 

(A 1.2) g(x) = Ig + 2 E (C(r)g cos 2irrx + S(r)g sin 2irrx) 
r=1 

is approximated by 
m/2-1 

G(x) = anm] + 2 E arm a] cos 2irrx + Xalma] cos 27rmx 
(A1.3) r=1 

m/2-1 

+ 2 E bbm a] sin 27rrx + lub/a] sin 27rmx 
r=1 

where 
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(A1.4) a[m a] = R'ma (g(y) cos 27rry), brma = Rvma](g(y) sin 27rry). 

The coefficients X and ,u are usually chosen to be 

(A1.5) ) = A= 1. 

However, we leave this assignment open pro tem. Our first aim is to express the 
discretisation error G(x) - g(x) in terms of the Fourier coefficients of g(x). To this 
end, we employ a finite form of the Poisson summation formula, namely 

00 

(A1.6) RzaI (f(x)) If + 2 j (C(ma)t cos 2rst, + S(ns)f sin 2irst.). 
s=1 

This may be applied directly to the function g(x) to obtain the error incurred in 
approximating Ig by ajm ]. For the corresponding approximations for the Fourier 
coefficients, we apply (Al.6) to the functions g(x) cos 2'rrx and g(x) sin 2irrx. Using 
the identity 

(A1.7) 2CmS)(g(x) cos 27rrx) = C(ms+r)g + C(ms-r)g 

together with three other similar identities, we find without difficulty that 
i+ 

a[mt a] _ C(09 (C(ms+r)g + C(ms-r) g) cos 27rstc 
(Al .8a) S=1 

+ E (S(ms+r)g + s(ms-r)g) sin 2rstta 
s=1 

and 

blma-] s (r)g Z (- s(ms+r)g + s(ms-r)g) sin 27rst 
(A1 .8b) s=1 

+ f2 (S(ms+r)g - s(ms-r)g) cos 2lrst,. 
s=l 

Substituting these expressions into the expression for G(x) - g(x), obtained by taking 
the difference between (A1.2) and (A1.3), gives 

co 

(Al.9) G(x) - g(x) = C (i)ga~t(x) + S ()gft(x) 
t =1 

with the functions a t(x) and t 1(x) given by 

at(X) = (x)t = 0, t < m/2, 

at (x) = 2{cos 2r(sta + rx)- cos 27r(ms + r)x}, 

(Al.10) f3t(x) = 2{sin 2r(sta + rx) -sin 27r(ms + r)x}, 
t = ms + r, IJr < m/2, 

a?ms+m/2(X) = 2v cos 7r(2s + l)ta - 2 cos(rm(2s + l)x), 

1ms+m/2(x) = 2v sin 7r(2s + l)ta - 2 sin(7rm(2s + l)x), 

(Al.ll) V -V(XIA, ,a, mx) = X cos rta cos irmx + A sin tt8t sin rmx. 
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If we denote by M, the maximum value attainable by v, namely, 

(A1.12) Iv I M= 2 + +_2 2 2 

and set 

(Al .13) M= max(M,, 1), 

then 

(A 1.14) lat(x)l < 4 Ml, AW1x~ < 4M1. 

Thus 

(Al.15) IG(x) - g(x)l < 4M1 E ICItgg + ISitgg. 
t =m/2 

In the normal case, X = y = 1 and M1 = 1 and so inequality (Al.15) is identical 
with the corresponding inequality (2.16) of Section 2. However, with any assignment 
of X and g, the analogue of Theorem 2.17 follows from (A1.15). 

The series manipulation described above which leads to Eq. (Al.9) requires 
justification as some of the series involved may be only conditionally convergent. 
In fact, it follows that, so long as the Fourier series (Al.2) is convergent for values 
of x required in the rule sum evaluations, namely x (j + t)/m, then the series 
(Al.6) and (Al.8) are also convergent, since these are finite sums of (Al.2) for various 
values of j with finite weight coefficients. The step to (Al.9) requires reordering, but 
this is only a local reordering and may be justified without difficulty using standard 
techniques. 

We conclude this appendix by outlining the situation with respect to the choice 
of X and ,. First, we note that the final terms in (Al.3), those with r = m are in 
essence simply alternating sums over the function values. Thus 

Xa[m /2I cos rmx + gub[m2t] sin irmx 

(Am.16) 1 m )v(X g, ta, mx). 

The condition for the analogue of Theorem 2.20 to be valid, i.e., for 

(A1.17) G(ta + J) = (ta Z-J) j = 0, 1, 2, , m - 1, 

is 

(A1.18) X COS2 rta + 4 sinf lta = 1. 

While G(x) is an approximation to g(x) of trigonometric degree m/2 - 1, no choice 
of X and , will make it of degree m/2. If we require the function 

(AI.19) cos(irmx - 0), 0 ? 0 < , 

to be integrated exactly, X and A satisfy 

(A1.20) X Cos lrt = Cos O/Cos(lrta - 0), u sin frta = sin 0/cos(7rta - 0). 

If X and , satisfy these conditions, it follows that they also satisfy condition (Al.18) 
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above and it also follows that 

(A1.21) v(X, A, ta, mx) = cos(7rmx - 0)/cos(7rt - 0). 

Thus, if the calculation is carried out with some value of a, and subsequently the 
result is to be adjusted to fit the function cos(7rmx - 0), only the final term (A1.16) 
need be adjusted. This can be done for all values of 0 except the one which makes 
cos(irta - 0)= 0. 

Finally, an obvious choice for X and A is 

X= 1; g = 1; ta = 

giving 

v = cosr(mx- ta) and M, = 1. 

Appendix 2. Properties of Xrqtma] and Yrqrna, the Discrete Fourier Coef- 
ficients of the Bernoulli Functions. In Section 3, quantities involving trapezoidal 
rule sums over functions which are products of Bernoulli polynomials and sine or 
cosines occur. They may be defined by 

(A2.1) a] = x[ma] + i y[m,] = R[ma(Bq7)e27rY) 

In the actual calculation, numerical values are needed for a = 1 and 0, q = 1, 2, ... 

p- 1, r = O 1,2, , ii/2 and m = 4, 8, 16, , mor some other sequence of 
mesh ratios. Typical values of p and mn are 10 and 32, respectively. In practice, a 
straightforward way of calculating these is simply to carry out the summation in 
each case. However, they do have simple analytic forms and simple expansions some 
of which are derived here. 

Two special cases are: 
(i) q = 0. 

[i, a]I 

Xr" 0 = cos 27r(r/m)ta, r/m = integer or zero, 

(A2.2) yr?? a = sin 27r(r/m)ta, r/m = integer or zero, 

Xr"~t= 0 Ym = O, other values of r. 

(ii) r = 0. 

(A2.3) X'mm a] = Bq(t)/mq q Y'mM aI = O. 

Making use of the generating function for the Bernoulli polynomials 
co 

Bq(X) = q te Xt 
(A2.4) Ltl < 27r, 

(see Abramowitz and Stegun [1]), we construct a generating function for Zr~ q[ a] as 
follows: In view of (A2.1), we have 

(A2.5) E Z'a to = Rtm te(je2 1 e Y) 

The trapezoidal rule sum on the right is simply a geometric progression which may 
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be summed. If we set 

(A2.6) t = 2my, p =rr/m, 

we find 
0o 2y (2y+2ip) ta 

(A2.7) E yQ(2m)QZ'ra ] I < I y 0. E y ~~~~~1 (2v+2iP), II<1,y$0 

This relation is also valid for y = 0, p/2r - integer. The right-hand side depends on r 
and m only in the combination p = rr/m. Consequently, the function (2m)'Zr, [n, a] is 

invariant under transformations which leave r/m invariant. For example, 

(A2.8) Ztra] = Zrn ]/(2m)y 

The generating function (A2.7) shows that, for a fixed p, the function Zr, Mn a] is a 
polynomial of degree q - 1 in ta. This polynomial is, apart from scaling factors, 
the C-polynomial discussed in Chakravarti [7]. The precise relationship is 

ZLm a] = 1)! M2-qe-2ptaCqj(ti rQ (q 1) e @ 2ip). 

In the rest of this section, we confine ourselves to the cases in which a = 0 or 1 
corresponding to the trapezoidal midpoint and endpoint rules. For a = 1, we take 
the mean of (A2.7) as a approaches -1 and + 1, respectively, to obtain 

(A2.9) E yQ(2m)YZ1M l]"= y coth(y + ip). 
q =o 

For a = 0, we find that (A2.7) reduces to 

(A2.10) E yQ(2m)QZ[m'0] = y cosech(y + ip). 
q=O 

Differentiating (A2.9) q times and setting y = 0 gives 

q! (2m)YZ7mq"' = dy (y coth(y + ip)) 

- q dye coth(y + ip) 

Thus 

(A2.1 1) (2 m)(q - 1)! dz- cothz=iP 
1 d<al 

(2m)2(q- 1)! Pq dxq- c x=P 

Since Xr, [ml] and Yr [2mi ] are real and, except for the factor iq, the right-hand side 
of (A2. 11) is real, we find at once that 

[m 1] 
X( 2 r] = 0, q odd, 

(A2 .12) 

YrM lq 0, q even, 

while one may construct a list of analytic forms for the nonzero quantities by dif- 
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ferentiation. Thus 
y[ml = -(2m cot p, 

(A2.13) Xr', = +(2mY2(cot2 p + 1), 
M = ?(2m)3(cot3 p + cot p), 

M,= -(2m)-4(cot4 p + 4 cot2 p + 3), 

and so on. Here, p = 7rr/m and 0 < p < 27r. A series representation follows from 
the series for cot x, namely 

1 0 
k k B2 2- (A2.14) cotx = - Z 2 (1) k 2k-i 

X k=1 (2k)!X <li<r 

Using this in (A2. 11) gives 

( )n (2 M)2n Xr[m, 
1 

-1 1 ~~~~~~k( k B2k (2k -I1) 2k-2n-1 

(A2.15) p + (2n - 1)! 
Z 

k() (2k)! (2k - 2n)! P 

(I)n (M)2n-1 yM'11 

1 1 
0 

k k B2k (2k -1)! 2k-2n+1 

p2n-1 (2n - 2)! k=n (2k)! (2k - 2n + 1)! P 

Similar results for Xr arm, oJ and Yr, ,m ol may be obtained following a precisely anal- 
ogous procedure, starting with (A2. 10) in place of (A2.9). This leads to 

[mO]1 - 
1cse x (A2.16) Zr , = (2m)'(q - 1)! P 2 A OSC 

and 

Yr?0' = -(2m)1 cosec p, 

(A2.17) Xr'?= +(2mY2 cosec p cot p, 
Yo 3= +(2m) cosec p(cot p + 2), 

Xr,4 = -(2m) cosec p(cot3 p + 5 cot p) 

These values may also be obtained from the corresponding values with a = 1 since, 
as each is a trapezoidal rule sum, 

(A2 .1 8) ~ 1(Z M'0' + Z M'11) = z[2m,,] 

We require in Appendix 3 a bound on the difference between these discrete 
Fourier transforms of Bq(x)/q! and the corresponding Fourier coefficients. This is 
given in Theorem A2.25 below. As a preliminary, we consider the function 

(A2.19) f(x) = l/x - cot x, Ixf < 7r. 

In view of (A2.14), this function has a Taylor expansion about x = 0 all of whose 
coefficients are nonnegative. It follows that 

LEMMA A2.20. f(x) and all its derivatives are monotonic increasing positive valued 
functions of x in the interval 0 < x < ir. 
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Next, we require bounds on the values of the derivatives of f(x) at x = ir/2. 
Since cot x = -tan (x - 7r/2), the derivatives of cot x at x = 7r/2 coincide with the 
negatives of the derivatives of tan x at x = 0. Using this, we find without difficulty that 

(A2.21) f 2'(7/2)= (2q)!/(=/2)2a+ 

(A2.22) t(2- 1)(7r/2) = -(2q - 1)!/(7r/2)2a + 22a(22a - 1) IB2q1/2q. 

This second expression may be rewritten and bounded as follows 

f((22q-) (7r/12) =(2q )! I + ?2 + -2 + 
(A2 .23) (r2 ~ j 2 

< ( 2 4 4)(2q - 1)!/(7r/2), q > 1. 

It follows from (A2.1 1) and (3.14) that 

(A2.24) 2[ m'- C1 r) (Bq(X)) -i S(r) (Bq()) = -f (q- ) (P) ~~ 
q q ~~~ (2m)(q 1)! 

where, as before, p = 7rr/m. 
Taking the real and imaginary parts of (A2.24), confining ourselves to values of p 

in the interval [0, 7r/2], using Lemma A2.20 and the extreme values (A2.21) and 
(A2.23), we find the following theorem: 

THEOREM A2.25. For q > 1 and r ? m/2, 

O < (_ )(q+2)/2(X[m cr)(Bq(x)/q!)) 

O < 
(_ l)(q+1)/2( y[m,11 - S(r) (Bj(x)1q!)) < L17Y/(7rM)q, 

where 

K2 = (7r2 4)/4, K2; > K2i+2 > 1, 

Kq = 0, Lq = 1, q odd, 

L- = 0, qeven. 

The bounded quantities are monotonic increasing functions of r (or identically zero) 
attaining the upper bound when r = m/2. 

We conclude this section with rather a trivial theorem, which is convenient to 
use in Section 3. 

THEOREM A2.26. 
m/2-1 

E'm(x) = B1(x) - 2 Y y[m ?1 sin 27rrx 
r=1 

satisfies inequality (3.20), namely |E1 m' 1(x)l < 2 

We establish this by comparison with a function 

m/2-1 

(A2.27) i/'(x) = A(x) - 2 E S(r)(BI(x)) sin 27rrx 

which represents the difference between the saw tooth function B1(x) and the first 
m/2 - 1 terms of its Fourier expansion. It is well known that 
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(A2.28) O(x) I-< 12 

Now 

m/2-1 

fEnm 1](x) - t(x)I = 2 E (YmL'1' - S(r)(Bl(x))) sin 27rrx 
(A2.29) r=l 

1 m/2-1 

< -I E f(7rr/ m), 

where the inequality is based on replacing sin 2irrx by 1 and using (A2.24) with q = 1. 
Since f(O) = 0 and f(ir/2) = 2/ir and f'(x) is nonnegative in the interval [0, 7r/2], it 
follows that 

(A2.30) f(7rr/m) < 4r/7r-m, 0 < r < m/2. 

Thus 

(A2.31) Em 'l(x) - {I'(x)I < ? (4r/lrm) I - M r=l17 

Theorem A2.26 follows from inequalities (A2.28) and (A2.31). 

Appendix 3. Effect of Approximate Derivatives on Practical Convergence 
Criterion. In this section, we discuss briefly the effect of approximate derivatives 
on the actual quantities which are used in the practical convergence criterion. The 
purpose of such a discussion is to verify that spasmodic behaviour is not introduced 
into the Fourier coefficients or their trapezoidal rule approximations in a way which 
might hamper the operation of the criterion. 

It follows quite simply from (3.7) and other formulas in Section 3 that 

C~)g c(r) g, = Aq- 
(A3 .1l) q! 

l ? I ?3 ?(1)' I\21-1 
(2iir)2 (2irr)4 + (27r)1 

where 

(A3.2) 1= [(p- 1)/2]. 

Similarly 

p-1 

(A3.3) [ Im,1 - a IMi = z E lxrn iM l 
q=l 

Thus 
([1Jr - C(rig ) _ (amiJ - c(r)g) 

(A3.4) p-i - 
__r)(Bq(X)) 

q=l1 ~ ~ 
The first point to note is that the functions on the right-hand side of these equations 

are colloquially 'smooth' functions of the integer variable r. By themselves, they are 
not likely to mislead a carefully constructed practical convergence criterion. Thus, if, 
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in practice, it is found that the sequence arM' 1), r = 1, 2, * is behaving erratically, 
this behaviour is likely to be a consequence of the fact that the sequence arprm ii 

r = 1, 2, * , behaves erratically and it is most unlikely to be induced by the use of 
approximate derivatives. 

Next, we look at the magnitude of the right-hand side of (A3.l). For small 
values of r, this may be quite large. However, for large values of r, this difference 
approaches zero. Specifically, using bounds (3.34) on the values of A-, 

(r) C- C(r)gpI < P (i-), r _ kl2r, 
(A3.5) 

2<rr 2irr/ r _ k/2T. 

(While this difference approaches zero, the actual value of the coefficients also ap- 
proaches zero. Cr) kg approximates Crig, in an absolute sense and not a relative 
sense.) Since the function gP(x) may be quite different from gp(x), one expects their 
Fourier coefficients to be different. This result indicates that the numerical difference 
is largely accounted for by the early Fourier coefficients. 

Finally, we treat (A3.4) in the same way. Using the bound stated in Theorem A2.25, 
we find 

j(atfl C(r)kg) _ (a','1' - C(rig)I 

(A3.6) - k ( Im /r 

< 2.2 efp (- m > k/Tr. 

This inequality compares the error in the trapezoidal rule approximation in the 
two cases. These bounds are independent of r. For all values of m, the second bracket 
on the left-hand side is of order O(M-21- 2). Thus for small values of m, the first 
bracket on the right behaves as if there were an additional term of order O(m-2 1). 

When m exceeds k/ir, this additional term is below the required accuracy Ereq < 2Pef 
by a comfortable margin. Thus, even though for small values of r, C(r) gp and C(r)g, 
are quite different, the different trapezoidal rule approximations approach their 
respective limits at much the same rate. 

Completely analogous formulas relating to the sine Fourier coefficients exist, 
and analogous conclusions hold. 
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